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ABSTRACT

The spall strength of alumina bars was determined using a bar impact apparatus.
The fracture morphology in the region of maximum tensile stress caused by the transient
wave was investigated using a scanning electron microscope. No microcracking was detected
away from the spall plane and the fracture toughness of the unspalled bar remained
unchanged with increasing velocity.

INTRODUCTION

The ultimate goal of this research project is to study the residual strength of
monolithic ceramics and ceramic/ceramic composites. The results of such a study can be
used to design engineered ceramic composites with higher impact resistance. In order to
achieve this goal, an impact test, which is a variation of the plate impact test, was developed.
The plate impact test produces a one-dimensional compressive square stress pulse, which
neglects the effects of lateral inertia caused by Poisson's effect, propagating from the impact
face at the speed of sound [1]. The impactor is made of the same material and its length is
half of the specimen length. A stress pulse, with a length equal to the specimen length, is
thus produced. The wave propagation behavior is illustrated by the wave propagation
schematics in Figure 1 and the characteristic diagram of the wave fronts (Lagrangian
diagram) in Figure 2. The incoming compressive wave reflects off of the free end as a
tensile wave and superposition dictates that the tensile stress component will be cancelled
by the compressive component. The result is a shrinking compressive wave centered in the
middle of the specimen. As the wave ends cross each other in opposing directions, a tensile
component suddenly appears at the center of the specimen. The square tensile wave form
will expand outward towards either end until the entire specimen is in a state of tension.
This cycle is repeated until the impact energy is dissipated. Details of elastic wave
propagation theory are given in Ref. [1]. The maximum stress amplitude of the pulse is -

given as

EC2E
o= 2C' p (1)

where C is the dilatational bar wave speed, E is the elastic modulus, p is the density, and Vo
is the projectile velocity.

Experience with metals shows that spall damage can occur at the location of
maximum stress and is a function of the tensile stress amplitude and pulse duration [2].
Based on the Lagrangian diagram, the region of maximum damage due to the stress pulse is
located in the middle region of the specimen. Plate Impact experiments on MgO crystals
generated microcracking near the midplane[31, and plate impact experiments on Cu-Si02
crystals produced microvoid formplo', near the midplane[4]. Alumina has been tested
extensively by high velocity plate impact experiments[5-1 1]. The spall strength of
alumina was reported to be dependent on the tensile stress amplitude and strain rate.
Microcracks can be "trapped" In brittle materials when the pulse duration is sufficiently ---

short.
i1
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EXPERIMENTAL METHOD

Since the current work requires fracture toughness testing, an impact technique was
developed which employs a 50.8 mm bar specimen which is impacted on one end by a bar of
half the length (See Fig. 3). The impact apparatus, shown in Figure 4, consists of an air
gun, pneumatic controls, and the impact system. The impact carriage, which contains the
impactor, is propelled down the guide rails towards the specimen carriage. The impactor
first collides with the specimen. Prior to collision of the plastic pieces, the elastic wave
traverses the specimen length several times. A sawdust filled catch box receives the
airborne specimen.

Since the stress level is a function of the impact velocity, accurate measurement of
the velocity is important. The velocity measurement system consists of a low power laser
which strikes a mirror mounted on the impactor carriage . The mirror, which has six black
lines accurately spaced every 10 mm, travels past the stationary laser beam. The laser
beam is reflected into a photodiode, producing a voltage reading by an oscilloscope. The six
lines produce peaks in the oscilloscope reading from which the velocity can be determined.
T he striking velocity, Vo, is determined by

V0 = 2PAd/m (2)

The velocity is a function of the pressure, P, the barrel cross sectional area, A, the
impactor carriage travel, d, and its mass, m. A calibration curve was established by a

2
straight line fit of the plot of Vo versus P.

A strain gage (M-M CEA-06-064UW-350) was mounted 21.6 mm from the impact
face in order to monitor the transient strain wave. Since the strain pulse has only a 6.2
lisec duration, the measurement system had to have at least a 10 MHz response. The gage
was a part of a potentiometer circuit which incorporated a high band pass filter(See Fig. 5).
The ten gain amplifying circuit had a 20 MHz response, and the digital oscilloscope was set
to 20 MHz. Since the strain gage has a finite gage length, it will average a rapidly varying
signal over its gage length[12,13]. One may either correct the distortion or simply keep
the gage length as small as possible in order to minimize the distortion[12]. The gages
which were used had a 1.6 mm gage length. Smaller gages could not be employed since they
could not dissipate enough heat on the specimens of poor heat conductivity. Excessive
current will thermally damage the strain gage[13,14]. Data acquisition programs have
been written for a wave form which is to be stored on the computer disk, sent to the
oscilloscope for accurate time, strain, and strain rate measurements, and allows a portion of
the wave form to simulate propagation in the specimen.

The specimens were precision cut and ground to the dimensions shown in Figure 3.
Since the specimens were to be examined under a scanning electron microscope(S.E.M.), one
side surface of the specirnen was polished prior to testing. Polishing was performed on a flat
glass plate using 6 micron and 1 micron diamond paste.

A critical requirement of a plate impact experiment is that the two impacting faces
must meet with perfect flatness, and to satisfy this, the two surfaces must be flat and
perpendicular to the adjacent sides. Precision grinding was followed by briefly polishing
the ends on a flat glass plate using 6 micron and 1 micron diamond paste. The contact
between the surfaces was checked under a microscope while the specimens were on a flat
surface. Even with careful machining, the impact carriages did not meet perfectly. A mold
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was designed so that urethane specimen/impactor holders were molded directly in the
machine. A single ground steel bar passed through both molding cavities. When the solid
metal piece was removed, perfectly aligned cavities were created in both plastic pieces. A
Smaller metal bar was added to create a cavity for the strain gage and it's wires. The
urethane had the added benefit of being dimensionally stable during curing and resilient to
the impact force.

Once the impactor and specimen were installed in the impact apparatus, a final check
was made by hinning a ho!i,-,.n laser light along iie line of contact witn a white paper
in the back ground. When no laser light could pass the contact line, then good square strain
pulses were produced. A poor contact between the impactor and specimen caused sinusoidal
wave forms with a superimposed slight flexural wave.

RESULTS

Alumina (Coors AD-85) bar specimens were impacted up to 14.0 m/s. Those
specimens impacted above 12.2 m/s failed by complete spall. Specimens which did not fail
by complete spall were tested for fracture toughness, KIC. All specimens were subjected to
rigorous optical and S.E.M. evaluation.

Bar Impact Test

The strain wave record is correlated with the Lagrangian diagrams in Figures 6 and
7 for the impact velocities of 12.2 m/s and 14.0 ms. The wave forms are basically square
as predicted by elementary bar theory, and the higher frequency oscillations are apparent
which is attributed to the lateral inertia. The wave forms compare closely to experimental
results for long rods obtained by Miklowitz[15] The "zero strain" periods predicted by the
Lagrangian diagram did not appear due to the three dimensional effects. As expected, the
first compressive pulse has the longest "true" duration. Interestingly, the spalled
specimen impacted at 14.0 m/s failed on the second cycle of tension. This was consistent
among all specimens which failed by complete spall and supports the theory of cumulative
damage.

Figure 8 displays the predicted and experimentally determined stresses plotted
against the impact velocity. The predicted stress was calculated using Equation (1) with the
measured impact velocity and wave speed, and the stress was obtained from the measured
strain. Both values used the manufacturers value of Young's modulus (see Table 1). Some
question arose in the measurement of the strain level since lateral inertia effects cause
jagged wave forms. The measurement was taken at the peak values, but wave theory
indicates that this could lead to stress values which are 27% too high (see Ref. 15).

Fracture Toughness Determination

The unbroken specimens were subjected to KIC evaluation by the procedure
presented in References [16-18]. The fracture toughness is plotted as a function of impact
velocity in Figure 9. The KIC was found to be independent of impact velocity. Variation of
KIC in Figure 9 is attributed only to the experimental scatter. Values of KIC are close to
those given by the material's manufacturer In Table 1.
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Macro/Micro Damage Evaluation

Figure 10 maps the macrocracking found in the specimens which failed by complete
spall. The alumina bars subjected to low velocity impact in this test did not exhibit the
duration and magnitude dependency of failure. The specimen which did not fail at 12.2 m/s
showed an unusual crack originating at the impact face. No other cracking was found in the
intact specimens. The polished sioe surface revealed no wide spread microcracking when
examined under the scanning electron microscope, but an uncommon microcrack was found
originating at a pore (Fig. 11). This was the only microcrack found not associated with a
spall fracture.

The fracture faces of the spalled specimens and quasi-static fractured specimens
were examin,d under the S.E.M., and the damage characteristics are summarized in Table 2.
The spall failed specimens exhibited extensive crack branching (see Fig. 12) where the
quasi-static fracture specimens showed none. The fracture surfaces were qualitatively
examined for intergranular and transgranular fracture characteristics. In both cases only a
small percentag3 (-5-10%) of the grains failed by transgranular fracture (see Fig. 13)
and the remaining surface was intergranular failure. The spall fracture surface exhibited
substantial microcracking evidence of both grain separation (see Fig. 14) and transgranular
fracture (see Fig. 15). The grain separation occurrences appeared to correlate with the
impact velocity. Such intergranular failures only appeared at the spalled fractured surface,
hence no change could be expected in the physical properties of the unspalled specimels.

CONCLUSIONS

The low velocity impact event produced essentially no microcracking away from the
spall planes. This was reflected by no change in the fracture toughness of the intact bars.
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Table 1, Material Properties

Material Alumina(A1203)

Manufacturer's Designation Coors AD-85

Elastic Modulus(GPa) 221

Possion's Ratio 0.22

Density (g/cc) 3.41

Flexural Strength (MPa) 31 7

Fracture Toughness (MPa'Jr-m) 3 -4

Bar Wave Speed (km/s) 8.1

Table 2, Fracture Face Characteristics of Alumina

Out of Plane Microcracks
lntergranular Transgranular lntergranular& Transgranular Crack
Primary Filure Erimal FailureTil I ints Crackng Branchng

Unimpacted
quasi-static 1 2 4 5 5
fracture

Quasi-static 1 2 3 5 5
fracture(1 2.2m/s)

Spall fracture 1 2 2 3 3
(12.5 m/s)

Spall fracture 1 2 2 3 3
(14.0 m/s)

1 . Extensive
2. Common
3. Occasional
4. Rare
5. Non-existent
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F.B. Impactor Specimen F.B.
4t r-

0 - Tensile r [3- Tensile
Stress Stress

0 - Compressive 13 - Compressive
Stress Stress

2t t

0 0
L Impactor 0 Specimen 2L L 0 L 2L

Figure 1, Wave propagation schematic in Figure 2, Characteristic diagram of the wave
a plate impact test. fronts (Lagrangian diagram).

Strain gage

21.6 mm A

-4 25.4 mm I 06.8 mmA
Impactor Specimen

7.24 mm 1
Section A-A times 4

Figure 3, Specimen Geometry and Strain Gage Location.



TOP VIEW 9

nGuie -Impactor Carriage
r Gu RS pecimen Carriage

Impactor Specimen

Absorber

Sawdust

Plastic s
Inserts

CROSS SECTION PROFILE VIEW

Figure 4, Impact Apparatus, including airgun, impact carriage, specimen carriage.
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Figure 5, Strain Gage Circuit; Rb - 562 0, V = 15 volts
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Strain History of Bar Impacted at 12.2 rn/s

Material: Coors alumina -40
No Spall Failure
Maximum Stress: 169 MPa (E-221 OPa)
Estimated Half Period, t: 6.1 micro-sec.,
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0 - Compressive.............U
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03 t

.....................................

-20
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10 0
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Strin ag zoe ............................ .. .. .

-25.o 0 21. 00.8

SStrain Gage Output
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Strain History of Bar Impacted at 14.0 m/s

Material: Coors alumina 4

Complete Spall Failure
Maximum Stress: 196 MPa (E=221 GPa)... -

Estimated Half Period, t: 6.1 micro-sec.

3 -0

F.B. Impactor Specimen F.B. W "~

A; Stes+ *7 1200 1/s06

-Compressive .Stress .... 2
3 t

0

0

I 9 0

L Lr

0
-25.4 0 21.6 50.8

Position (mm) ------- r---
Strain gage zone 0 0D 0

0 0D 0 ) 0(G.L.-l .6 mm) CO 11, ItC

Characteristic diagram of the wave Strain Gage Output
fronts (Lagrangian diagram). (micro-strains)

Figure 7, Correlation of measured strain with Lagrangian diagram; velocity . 14 rn/s.
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Maximum Stress Amplitude in Bar Impact
350 . . . i .n

-
0

_300 -*

0 Theoretical Stresses +6
__ + Experimental Stresses 0

250

200
0

0. 4-
E 150

0

-+

h 100
L.

50

0 k I I n I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1415

Impact Velocity, Vo (m/s)

Figure 8, Measured and predicted stress level.

Fracture Toughness of Impacted
Alumina Bars

5 "

I Threshold
Velocity, 12.3 m/s

o I
4

0 0
C I
*~2

0-- No Spall Failure I
0 Complete Spall FailureI

o= I

U.
I--Lh • I. - - - ,,, n,' S. .

0 5 10 15 20

Impact Velocity, Vo (m/a)

Figure 9, Fracture toughness as a function of impact velocity.
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Compressive wave
4Tensile wave

Impact.* Vo = 12.2 m/s

Impact.-{ Vo = 13.0 m/s

impact-. .. *fVo = 13.2 m/s

Impact- Vo = 14.0 m/s

Intact crack

Complete spall fracture

Figure 10, Map of macrocracking in impacted alumina bars.

Figure 11, Uncommon microcrack leading from a pore, Vo = 10.1 m/s.
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J

Figure 12, Macroscopic crack branching

Figure13, Evidence of transgranular fracture; velocity 14 m/s.
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Figure 14, Intergranular crack (grain separation) in alumina; velocity 14 m/s.

Figure 15, Transgranular fracture crossing several grains; velocity = 12.5 m/s.
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